Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Год
Годовой диапазон
1.
J Biol Chem ; 296: 100630, 2021.
Статья в английский | MEDLINE | ID: covidwho-1333548

Реферат

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Тема - темы
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Immunologic Factors/pharmacology , Interleukin-18/genetics , Receptors, Interleukin-18/genetics , Anti-Inflammatory Agents/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Candida albicans/growth & development , Candida albicans/pathogenicity , Gene Expression Regulation , HEK293 Cells , Humans , Immunologic Factors/biosynthesis , Inflammation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-18/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophage Activation Syndrome/drug therapy , NF-kappa B/genetics , NF-kappa B/immunology , Primary Cell Culture , Receptors, Interleukin-18/antagonists & inhibitors , Receptors, Interleukin-18/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , COVID-19 Drug Treatment
2.
Basic Clin Pharmacol Toxicol ; 128(2): 204-212, 2021 Feb.
Статья в английский | MEDLINE | ID: covidwho-919229

Реферат

The coronavirus responsible for COVID-19, SARS-CoV-2, utilizes a viral membrane spike protein for host cell entry. For the virus to engage in host membrane fusion, SARS-CoV-2 utilizes the human transmembrane surface protease, TMPRSS2, to cleave and activate the spike protein. Camostat mesylate, an orally available well-known serine protease inhibitor, is a potent inhibitor of TMPRSS2 and has been hypothesized as a potential antiviral drug against COVID-19. In vitro human cell and animal studies have shown that camostat mesylate inhibits virus-cell membrane fusion and hence viral replication. In mice, camostat mesylate treatment during acute infection with influenza, also dependent on TMPRSS2, leads to a reduced viral load. The decreased viral load may be associated with an improved patient outcome. Because camostat mesylate is administered as an oral drug, it may be used in outpatients as well as inpatients at all disease stages of SARS-CoV-2 infection if it is shown to be an effective antiviral agent. Clinical trials are currently ongoing to test whether this well-known drug could be repurposed and utilized to combat the current pandemic. In the following, we will review current knowledge on camostat mesylate mode of action, potential benefits as an antiviral agent and ongoing clinical trials.


Тема - темы
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Esters/therapeutic use , Guanidines/therapeutic use , Serine Proteinase Inhibitors/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Drug Repositioning , Esters/administration & dosage , Esters/adverse effects , Guanidines/administration & dosage , Guanidines/adverse effects , Humans , Mice , Patient Safety , Serine Endopeptidases/drug effects , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/adverse effects
Критерии поиска